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Abstract
Quantum elastic potential scattering of a particle is re-examined taking into
account exact solutions of the corresponding Schrödinger equation. In addition
to the scattering of stationary plane waves and stationary finite-width wave
beams, nonstationary wave packets having finite duration times are studied
and some corresponding examples are presented. The role of interference
between the scattered wave and the advancing incident beam is studied. Several
two-dimensional scattering problems, involving axially symmetric, generic
examples of nonuniform attractive and repulsive potentials, are discussed in
more detail. This discussion concentrates on finding proper conditions when
the solutions of the Schrödinger equation may resemble the corresponding
solutions of the classical Newton equation. Examples are shown where such
similarities occur.

PACS numbers: 03.65.Nk, 34.80.−i, 42.25.−p

M This article features online multimedia enhancements

1. Introduction

This paper attempts to reveal in a more explicit way the connection between the notions of
scattering in classical and quantum physics.

Scattering experiments, as well as their underlying theories, are major tools allowing a
microscopic investigation, description and understanding of physical systems, including e.g.,
atomic collisions and high energy collisions of elementary particles.

Within the frame of classical mechanics, initially free and uniformly moving along
rectilinear line incident particles impinging on scatterers, or target particles, are deflected, i.e.
are scattered. All those microscopic deflections of the incident particles change the average
macroscopic and statistical properties of the scattered beam. Those changes, detectable
experimentally, are quantitatively described by means of differential and total cross sections
( dσ

d�
and a total σT ).
In quantum mechanics, freely moving incident particles are described by wavefunctions,

usually having the form of plane waves. Due to the interaction between the incident and
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the target particles (scatterers) the wavefunctions are modified and besides the incident plane
wave �I (also called a primary or direct wave) one must include another wave, identified as
a scattered wave �S (also called a secondary wave), propagating outwards from the scatterer.

The quantitative studies of the wavefunction in quantum scattering processes were
stimulated by analogical analyses of waves scattering in many classical systems: acoustics,
optics and electromagnetic waves. Quantum properties of the investigated physical systems
are secured in the quantum interpretation of the wavefunction and its connection with particle
measurements. Otherwise, the quantum wavefunctions and classical waves are determined by
very similar equations.

Studies of classical wave scattering were initiated by Lord Rayleigh [1] discussing a
disturbance (scattering) of acoustic plane waves of sound by obstacles, placed in a propagating
uniform media. He found that an incident wave (primary in his terminology) induces a
secondary wave (later called scattered), propagating outwards from the perturber, which had
to be added to the incident wave to satisfy proper wave boundary continuity conditions. For
spherically and cylindrically symmetric scatterers, Lord Rayleigh introduced ‘partial waves’
which have become a very convenient form to represent the scattering waves.

Researchers who followed Lord Rayleigh’s analysis introduced an estimation of the
effectiveness of scattering and the interaction between the incident plane wave and the
perturber (which later were associated with scattering cross sections), using the magnitude of
the scattered function.

In particular, this was used for the scattering of electromagnetic waves by a dielectric
sphere, known as Mie scattering [2, 3] and other dielectric objects now discussed in textbooks,
e.g. [4]. The same idea of scattering evaluation, by means of the magnitude of the scattered
wave, has been adapted in the classical field theory to study the scattering of electromagnetic
waves by a cloud of electrons [5]. In the latter case, scattered radiation has been identified
with the electromagnetic radiation emitted by electrons, oscillating in the field of an incident
electromagnetic wave. However, to obtain the elastic component of the forward intensity
distribution, first the emitted radiation has to be superposed with the incident radiation that
forced the electron oscillations. Afterwards one can determine the relevant radiation pattern.

Nowadays, quantitative evaluations of scatterings are usually expressed by means of
analogical variables as in the classical case, i.e. differential and total scattering cross sections
dσ
d�

and σT .
Following the generally accepted derivation, presented in all quantum mechanical

textbooks and quantum scattering treatises, and also some analogies with other wave scattering
theories, the quantum scattering cross sections are expressed in terms of the scattered part of the
wavefunction �S . This scattered part of the wavefunction for centrally symmetric scattering
potentials V (r), can be analysed in terms of partial waves, i.e. the eigenwaves of the angular
momenta, and usually written with the help of the corresponding phase shifts δl . Thus the
cross sections are written as, see e.g. [6–10],

dσ(θ)

dθ
=

∣∣∣∣∣ 1

2ik

∞∑
l=0

(2l + 1) eiδl sin δlPl(cos θ)

∣∣∣∣∣
2

(1)

and

σT = 2π

∫ π

0

dσ(θ)

dθ
sin θ dθ = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl. (2)

A precise description of quantum scattering has been formulated using mathematical methods
of Hilbert space and functional analysis, see e.g. [11, 12]. In this language, the scattering is
often defined as a transition between asymptotically free states at the remote past (t → −∞)
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and distant future (t → +∞) realized by the relevant evolution wave operators. Adapting this
sophisticated precise mathematical formulation of the scattering to its physically measurable
description leads to similar expressions for the differential and total cross sections as are given
by equations (1) and (2).

However, deriving these expressions, Schiff had already noted that, according to the
strict principles of quantum mechanics, the particle density and current, given by quadratic
expressions of the wavefunction, should include the interference terms between �S and �I ,
when these parts of the wavefunction overlap. Nevertheless, he believed that with the help
of additional collimators the incident and the detected scattered beams can be separated, thus
justifying the above treatment. However, not dismissing his expectation, we point out that
those collimators would introduce other scattering elements. Their effect would be difficult to
distinguish from the true scattering caused by the target particles. Without adding any external
collimators, the quantum analysis of scattering can be done in a more consistent manner if the
infinitely extended incident plane waves are replaced by wave beams having finite transverse
cross sections and finite lengths (duration time). In fact, only such beams occur in scattering
experiments.

As had been noted by Newton [8] the use of monochromatic incident waves would produce
convergence difficulties in scattering theories. For mathematical reasons, the scattering waves
should be replaced by wave packets. In the following, it is shown how finite wave packets can
be incorporated into the scattering theory in a quantitative way. Verifying equations (1) and
(2), as well as establishing their range of validity, let us generalize the discussion of scattering
by taking into account the finite dimension of beams; in section 2 for stationary beams having
finite transverse dimensions but infinitely extended along their length, and in section 3 we will
consider finite duration of pulses, also describing their time evolution.

Attempting quantitative studies of scattering, which take into account the finite cross
sections of incident beams, let us simplify our analysis considering this problem in two
spatial dimensions. This simplification is not very crucial in the treatment of the plane
wave scattering, however, a description of finite-dimensional beams is much easier on a two-
dimensional plane than in three-dimensional space. That is due to the much simpler form of
the angular components of the partial waves; einφ in the first case and spherical harmonics
Ylm(θ, φ) in the second one. In addition, graphical presentations of the obtained results are
much easier.

A finite-width wavefunction in scattering problems can be obtained by a superposition of
an appropriate bundle of the scattering wavefunctions. The wavefunctions forming this bundle
include the plane waves propagating within the accordingly selected angular sector.

Though our discussion is restricted to 2D models, this approach may be valid for almost
any regular, finite-range axially symmetric interaction potential V (r). It requires building, for
a chosen V (r), a library of special functions being solutions of the radial Schrödinger equations
in the internal region. These libraries can be built using standard numerical procedures and
solving a set of ordinary differential equations. An illustration of these functions is presented
in the appendix.

Our particular examples correspond to a finite range of attractive (V0 < 0) and repulsive
(V0 > 0) interaction potentials of the form

V (r) =
{

V0
(

r
a

− 1
)2

r � a

0 r > a.
(3)

Throughout this paper, the Schrödinger equation is used in the dimensionless form

∇2
r �E(r) + 2(E − V (r))�E(r) = 0 (4)
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in which the particle energies and the interaction potentials are measured in unit of E0 (typical
for the selected problems), the unit of length is l0 = h̄/

√
mE0 = λB/(

√
2π), where λB is the

de Broglie wavelength for the selected energy E0, and the times t are given in h̄/E0.

2. Quantum scattering—stationary states

2.1. Plane wave scattering

A solution of the stationary Schrödinger equation for a particle in the presence of a
perturbing potential V (r) corresponding to the incident plane wave propagating in the direction
k(α) = k{cos α, sin α, 0}, k = √

2E, can be looked for using partial wave expansion

�k(x, y) =
{

eik(α)·r +
∑∞

n=−∞ cnH
(1)
n (kr) ein(φ−α) r > a∑∞

n=−∞ anψkn(r) ein(φ−α) r < a
(5)

where H(1)
n einφ are propagating outward partial wave solutions of the stationary Schrödinger

equation outside the scatterer represented by V , and ψkn represent the corresponding regular
solutions in the internal region, r � a. These internal solutions can be found solving the
equation

d2

dr2
ψkn +

d

r dr
ψkn + (k2 − 2Veff (n, r))ψkn = 0 (6)

where

Veff (n, r) = V (r) +
n2

2r2
. (7)

When V (r) = constant, these solutions can be explicitly written in terms of the Bessel
functions Jn or In. In the general cases they can be determined numerically, starting from the
initial data at points inside the centrifugal barrier close to r = 0.

For V (r) regular in the vicinity of the centre, equation (6) reduces to the Bessel equation
and the initial data for the internal partial wavefunctions can be taken according to

ψkn(r ∼ 0) �



Jn

(
r
√

k2 − 2V (0)
)

(r ∼ 0) k2 > 2V (0)

In

(
r
√

2V (0) − k2
)

(r ∼ 0) k2 < 2V (0).
(8)

These internal wavefunctions do not have to be normalized, as the proper normalization of
the total wavefunctions will be secured if the continuity conditions for � and � ′ at r = a are
fulfilled. These boundary conditions provide

an = ink

Wn

(
Jn(ka)H (1)′

n (ka) − J ′
n(ka)H (1)

n (ka)
)

(9)

cn = in

Wn

(Jn(ka)ψ ′
kn(a) − kJ ′

n(ka)ψkn(a)) (10)

where

Wn = (
ψ ′

kn(a)H (1)
n (ka) − kψkn(a)H (1)′

n (ka)
)
. (11)

The first solutions of this type were obtained by Lord Rayleigh [1] for the sound waves
propagating in a homogeneous media and perturbed by a small uniform cylindrical obstacle.

In the scattering theories the total wavefunction, �T , is customarily written as a sum of
the incident wave, �I (also called a ‘primary wave’), satisfying the free wave equation, and
its modification known as the scattered wave, �S (or ‘secondary wave’ in older discussions),
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�T
k = �I

k + �S
k . (12)

The scattered wave �S
k includes the cylindrical waves propagating outwards from the scatterer.

Most of the quantitative estimations of the scattering process, in particular the flux of scattered
particles and the differential and total scattering cross sections, are calculated employing the
scattered (or secondary) wave �S

k only. Thus in the asymptotic region (r � a) one has for a
particle incident along the x-axis,

�S(r, φ) ∼ f (kr, φ)√
kr

=
√

2

iπkr
eikr

∞∑
n=−∞

cni−n einφ (13)

leading to the differential cross section,(
dσ

dφ

)
(φ) ∝ |f (kr, φ)|2 ∝

∣∣∣∣∣
∞∑

n=−∞
cni−n einφ

∣∣∣∣∣
2

(14)

and for the total scattering cross section, because of the orthogonality of the different partial
cylindrical waves, one obtains

σ0 =
∫ π

−π

(
dσ

dφ

)
dφ ∝

∞∑
n=−∞

|cn|2. (15)

Similar formulae for a radially symmetric interaction in three dimensions, expressed by means
of partial phase shifts, are given in all textbooks and monographs on quantum mechanics
and scattering. However, the scattered wave �S is only one constituent of the quantum
wavefunction (or the total wave in the classical wave theories). It is not certain whether
the probabilistic interpretation of the wavefunction in quantum mechanics can be extended
to parts of the wavefunctions. Schiff in [6] pointed out that, with a strict application of
quantum mechanical rules in the computation of particle densities and currents, there should
be interference terms between the incident and scattered waves. It was expected that in real
experiments such interferences should not be important. In all such experiments, the incident
and scattered waves are intentionally separated with the help of applied additional collimators
properly shaping the particle beams. These interferences were only important in the forward
scattering and incorporated in establishing both the form and the properties of an optical
theorem. The optical theorem relates the imaginary part of �S in the forward direction,
φ = 0, with the total cross section.

The scattering of a particle represented by a plane wave by attractive (V0 < 0) and
repulsive (V0 > 0) potentials of the form given by equation (3) is illustrated in figures 1 and 2.
These figures show the magnitudes of

∣∣�I
k(x, y)

∣∣, ∣∣�S
k (x, y)

∣∣ and
∣∣�T

k (x, y)
∣∣ for the plane

wave incident along the x-axis. Some radial internal partial waves ψk(n, r), used in these
calculations, are presented in the appendix.

As it is seen, the incident plane waves are represented by not very interesting uniform
particle densities. The scattered parts of the wavefunctions �S are mostly concentrated in
the forward direction with much weaker waves at adjacent directions in the forward sector.
A similar enhanced forward scattering has been recognized as a nonclassical feature of the
quantum scattering [7].

However, just behind the scatterer, where the scattered wavefunctions show such a
profound concentration, the total wavefunctions �T show dips in the particle densities, clearly
visible as shadows (particularly in the case of the repulsive blocking potential). In a similar
manner we speak about a shadow scattering [8].

Only the data derived for the complete wavefunction, i.e. either �I being the true
wavefunction in the absence of any perturber, or �T being a true wavefunction in the presence



4450 W Żakowicz
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Figure 1. Magnitudes of an incident plane wavefunction for a particle incident along the x-axis
(I), the scattered part of a wavefunction (S) and the total wavefunction (T), with a scatterer at the
centre, attractive interaction (particle energy E = 1, V0 = −3 and a = 50).
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Figure 2. Scattered part of wavefunction (S) and total wavefunction (T), with a scatterer at the
centre, (for repulsive interaction (V0 = 3, E = 1 and a = 50).
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of a perturber may be interpreted in terms of the particle densities and currents; �S being a
part of the wavefunction, in those regions where it overlaps with �I , should not be interpreted
in particle terms. Thus, for the incident plane waves, uniformly extending over the whole
space, �S should nowhere be treated as a true wavefunction.

There would be no restrictions on these statements if only plane small (
λB) particle
detectors, insensitive to wave coherences, were used. More general detective schemes,
which sometime are able to distinguish between contributions from �S and �I , are briefly
commented on in the final section.

To formulate a more consistent theory of scattering, the incident plane waves should be
replaced by particle beams. In the next subsection this problem is investigated in more detail.

2.2. Finite transverse width wave beam scattering

The importance of the analysis of finite cross section incident beams has been noted in most
monographs on quantum scattering. However, finding that for weakly divergent, and in
consequence broad, incident beams the phase shifts are not much different from those found
for the plane waves, the quantitative analyses are often reduced to qualitative ones.

Our discussion of beam scattering will be given in quantitative terms. The introduction
of the finite cross section beams is particularly simple due to the linearity of the Schrödinger
equation. Superposing the solutions given by equation (5) for various angles α, with additional
weights and position-dependent phase shifts, one may describe a large class of beams having
arbitrary positions and orientations with respect to the scatterer.

Thus, when the incident plane wave ei k·r is replaced by

ei k(α)·r −→ 〈ei k(α)·(r−r0)〉P =
∫ π

−π

P (α) ei k(α)·(r−r0) dα (16)

the corresponding factors einα multiplying the expansion coefficients {an, cn} have to be
replaced by

einα −→ 〈einα e−i k(α)·r0〉P =
∫ π

−π

einαP (α) e−i k(α)·r0 dα. (17)

Choosing a Gaussian amplitude function P(α) = (w/
√

π) e−w2α2
, where w specifies the beam

width at the position of its waist r0, and the beam angular spread � = 1/w. Assuming that
� 
 1 one may approximate k(α) ≈ k{1− α2/2, α, 0}. Finally, the following approximations
for a finite profile incident beam [13, 14],

� inc
k (x, y) ≈ 2w√

4w2 + 2ik(x − x0)
eik(x−x0) exp

(
− k2(y − y0)

2

4w2 + 2ik(x − x0)

)
(18)

and multiplying factors 〈einα e−i k(α)·r0〉P

Gn,w,r0 = 〈einα e−i k(α)·r0〉w,x0,y0 ≈ 2w√
4w2 − 2ikx0

e−ikx0 exp

(
− (n + ky0)

2

4w2 − 2ikx0

)
(19)

can be found. Using the above expressions, one can describe the wave beams of a given width
w (or spread �) and concentrated at an arbitrary point r0 = {x0, y0}, incident along the x-axis
and scattered by a cylindrically symmetric potential V (r). Note that the beam displacement,
in the direction of the y-axis, measured by y0, may play an analogous role to the impact
parameter in classical scattering. Examples of the partial wave expansion coefficients, and
their transformation for finite-width beams, are shown in figure 15 (see the appendix).

The corresponding beam scattering stationary wavefunction, parametrized by the energy
E = k2/2, the beam width w and the incident beam waist position r0, is denoted as �T

E,w,r0
(r).
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Figure 3. Incident narrow beam wavefunction (I), scattered part of wavefunction (S) and total
wavefunction (T); the same attractive scatterer as in figure 1, the beam width w = 5, the beam is
shifted to y0 = 20 and concentrated at x0 = 0 plane.
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Figure 4. Scattered part of wavefunction (S) and total wavefunction (T); the same repulsive
scatterer as in figure 2 and the same incident beam as in figure 3.
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The free beams may stay transversally concentrated within limited intervals along their
length. The length of these intervals decreases for more confined and therefore more divergent
beams, (i.e. when w ↘ 0). Beyond the confinement intervals the beams spread indefinitely.
Such beams in the confinement regions, before collision with a perturber, show properties
analogous to free classical rectilinear motions represented by straight orbits or paths. A
perturbation of the free beam by a scatterer causes changes in its free motion. All such
changes are summarized as a scattering. The above notion of scattering is the same in both
classical and quantum physics.

Keeping the above analogy between classical paths and quantum beams, one may
investigate similarities and differences between classical and quantum scattering.

Note that the quantum beams, being two-dimensional objects, are characterized by more
parameters than the corresponding one-dimensional classical trajectories. In addition to the
displacement y0, which can be treated similarly as the impact parameter of a scattered classical
particle, one can include the beam width w and the position of its maximum concentration x0.

Figures 3 and 4 show scattering of narrow beams (w = 5 
 a = 50) by two scattering
attractive (V0 = −3) and repulsive (V0 = 3) potentials. The beams, incident along the x-axis,
are concentrated in the plane perpendicular to the x-axis, passing through the centre of a
scattering atom (x0 = 0). The properties of the incident beams are completely specified by
�I , being the true quantum mechanical wavefunctions in the absence of any scatterer.

As these pictures show, in both attractive and repulsive cases, there are two beams derived
using the scattered wave �S only, and propagating outwards from the scatterer. While one
of them, in each case, represents a deflected function, the second coincides with the incident
beam. However, according to the widely accepted definitions in scattering theories, they
should be considered as scattered beams. This ‘summed scattered flux’ based on �S would
be twice as large as the flux of the incident particles. These difficulties can be resolved noting
that the corresponding superpositions of the scattered parts of the wavefunctions �S cannot
provide the correct densities or currents of the scattered particles along the path of the incident
wave.

In contrast to the above ‘scattered beams’ the beam density distributions determined using
the total wavefunction �T show only the deflected parts of the beams. These distributions,
corresponding to the appropriate narrow bundles inside the interaction region, have the form
of single entities which look similar to the deflected orbits in classical motion. The wave-like
or quantum features of these beams are manifested in their shrinking when approaching (and
spreading when departing from) the position of maximum concentration.

When, in the region of significant interaction, the scattering wavefunctions are not so
narrow, then, upon passing the scatterer, these wavefunctions split into several smaller beams.
That happens, for example, when the incident beam is focused not inside the scatterer
but at a large distance before it. This distance must be sufficiently large, so that, due to
natural spreading of the concentrated beam in free motion, the beam entering the interaction
region becomes broad. In consequence, the incident beam splits into multiple sub-beams,
as illustrated in figures 5 and 6. The above splitting of the incident beams into separated
pieces, which appear in detecting devices as separated intensity peaks, is the most evident
demonstration of wave and quantum properties of matter in the scattering process. These
pictures also illustrate why Young, and earlier Grimaldi, demonstrating interference effects
had to use the sun’s light first transmitted through a small opening [15].

Generalizing the discussion of scattering from a homogeneous cylinder [14], one may
point out that scattering processes modify the incident beam in two ways. Firstly, some fraction
of the incident beam is deflected (scattered) out of the beam, and may be experimentally
measured by detectors surrounding the incident beam but placed outside this beam. The



4454 W Żakowicz

-200 -100 0 100 200
x

-100

0

100

200
y

T

-200 -100 0 100 200
x

-100

0

100

200
y

S

-200 -100 0 100 200
x

-100

0

100

200
y

I

Figure 5. The same situation as in figure 3, except that the incident beam waist is shifted to the
x0 = −200 plane.
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Figure 6. The same situation as in figure 4, except that the incident beam waist is shifted to the
x0 = −200 plane.
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evaluation of this scattering can be done using the scattered part of the wavefunction �S ,
and expressions for the differential cross section dσ

dφ
kept beyond certain small forward and

backward angles φB specified by the incident beam (and dependent on the distance from the
scatterer and the actual beam width). Secondly, the scattering by removing some parts of
the beam modifies the incident beam itself, i.e. within the forward sector −φB < φ < φB .
The estimation of this modification cannot be given using �S , instead the two experiments
and fluxes have to be compared; the first experiment, performed with the scatterer present,
and described by the complete wavefunction �T , and the second one, being a reference
experiment, done with the same incident beam in the absence of the scatterer, and described
by �I .

Both modifications, i.e. outside and inside the incident beam, are not independent, as they
are the result of the same scattering process. Their connection is referred to as an optical
theorem and for incident plane waves discussed in most textbooks on quantum mechanics. An
illustration of the optical theorem for finite-width beam scattering by hard cylinders is given
in [14].

Figures 7 and 8 present the intensities of the forward scattering for non-centrally
incident beams, wider than the range of attractive/repulsive interaction, at several distances
(exponentially increasing) from the scatterer. At small distances, there are characteristic
shadows just behind the scatterer, accompanied by very rapid intensity oscillations around
the incident beam intensity (plotted as a dotted line) in those parts of the incident beams
which geometrically pass outside the scatterer. Such oscillations are sometimes interpreted as
caused by sharp edge diffraction, however, our ‘scatterer edges’ are rather smooth. Behind the
scatterer, inside the shadow region, one can find a distinct ‘scattering intensity distribution’
computed using the scattered part of the wavefunction �S . Sometime these parts are treated
as evidence of either quantum scattering, e.g. [7], or wave scattering, e.g. [4]. However, these
distributions cannot be detected in any direct measurements.

Increasing the distance from the scatterer, the number of intensity modulations decreases
and eventually they disappear, being moved outside the beam. At the same time, the shadow
behind the scatterer disappears, being gradually filled with penetrating wavefunctions. At very
large distances, this wavefunction of the scattered beam becomes very similar in its shape to
the shape of the freely propagating and spreading incident beam. However, it is diminished in
its amplitude as some fraction of the incident beam has been scattered outside.

Because of the optical theorem for beams, one can measure either the total integrated
flux of scattered particles out of the beam, or the difference between the incident flux in the
absence of a scatterer (thus determined by �I ) and the true particle flux with a scatterer present
(determined by �T ) integrated across the transverse cross section of the incident beam.

The scattered fluxes determined both ways are equal. However, they are functions of the
separation of detectors from the scatterer. These values become fixed at the distances where
all intensity fringes within the incident beam disappear, and a similarity between the scattered
and incident fluxes is reached.

The value of this asymptotic distance Rasy depends on the width of the incident beam w,
and on the properties of the scatterer, e.g. the range of the interaction a, or on the value of the
total cross section σT which is being determined. For increasing incident beam width w, the
asymptotic distances Rasy grow, while the difference between the fluxes with and without
the scatterer decreases. Thus the measurements of the forward asymptotic fluxes require
higher and higher precision detectors. This shows that the use of the optical theorem in
determination of the total elastic scattering cross section may be difficult.

It is remarkable that at larger distances the forward scattering patterns, for the
corresponding attractive and repulsive potentials, are very similar.
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Figure 7. Forward scattering patterns illustrating the magnitudes of �I (dotted line), �S (dashed
line) and �T (solid line), in the case of an attractive interaction, for a wide non-central incident
beam at increasing distances from the scatterer (V0 = −3, a = 50, E = 1, w = 200, y0 =
150, x0 = 0).
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Figure 8. The same as in figure 7, but for a repulsive interaction (V0 = −3).

3. Quantum scattering—time dependence

Although some causal relations between the incident and scattered states are expected, and,
in fact, scattering is described in terms of time events, such an interpretation is not very
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Figure 9. Evolution of finite duration time, moderately narrow wave packets, concentrated in the
x0 = 0 plane, composed of eigen-energy wavefunctions similar to that presented in figure 3. It
is attractively interacting with a central scatterer, shown as a function of time according to the
Schrödinger equation (V0 = −3,�E = 0.05, δE = 0.04). The discs placed in the centre of the
wave packets represent a classical particle moving according to Newton’s equation. This wave
packet exhibits the classical features of a comet-like motion.

consistent with the stationary picture of scattering used in the previous section. Using the
stationary states, the particle densities and currents are of course not time dependent, and
only the space dependence of the scattering beams is determined. This is like the shape and
positions of classical particle paths, or orbits.

Nonstationary states, corresponding to the scattering of a finite duration time incident
pulse, can be constructed by a superposition of the stationary scattering wavefunctions just
described, corresponding to selected sets of their energies {E1, E2, . . .} and their amplitudes
{g1, g2, . . .},

�T (r, t) =
∑
j=1

gj eiEj t�T
Ej

(r). (20)

Actually, the energy spectrum for the scattered states is continuous, and to describe the solution
of an arbitrary initial problem, this discrete sum should be replaced by an integral over the
continuous variable E and amplitude functions g(E). The above discrete formulae should be
treated as samples of the general expressions. They are not supposed to provide solutions for an
arbitrary initial problem of the time-dependent Schrödinger equation, but, as is demonstrated,
can illustrate properties of a rich class of those solutions.
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Figure 10. The same as in figure 9 for a repulsive interaction (V0 = 3). The wave packet exhibits
the classical features of a billiard-bowl collision.

Selecting the stationary finite-width beams described in the previous section and specified
by the parameters w and r0, one can build, according to equation (20), nonstationary wave
packets composed of those stationary wavefunctions with the same width and shifts.

We select the sampling set of energies to correspond to the equally spaced energies in an
interval �E, centred around a mean value E0,

Ej = E0 + j
�E

2N
j = 0,±1, . . . ,±N.

The amplitudes gj will be taken according to a Gaussian function

g(E) = N exp

(
− (E − E0)

2

δE2

)
where the width of this Gaussian δE is of the order of �E.

Sampling the energies at a set of finite values one obtains the wavefunctions being periodic
in time. Selecting a sufficient number of terms Ej , it is possible to find that in a given time and
space interval �T × �R only one wave packet is visible, thus approximating the evolution of
a single confined particle.

Figures 9–13 show time evolutions of finite space and duration time pulses scattered by
attractive and repulsive potentials specified previously. The same pulse evolution is shown
in video films 1–4 (multimedia movies are available from the article’s abstract page in the
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Figure 11. The same as in figure 9, with an attractive interaction, except that the initial wave
packet was concentrated in the x0 = −250 plane and arrived at the scatterer as a wide one, thus
exhibiting wave-like or quantum features in scattering.

online journal). The pulses are composed of multi-energy stationary states. Each of those
stationary states is composed of the finite transverse cross section beams described in the
previous section.

Figures 9 and 10 include the displaced stationary beams concentrated inside the interaction
regions that have been associated with classical orbits in the classical scattering, presented
in figures 3 and 4. The discs, moving together with the wave packets, are classical particle
trajectories calculated according to Newton’s equation of motion. Similarities between these
classical motions and the motion of the corresponding quantum wave packets determined
by the Schrödinger equation are the most evident demonstration of the connection between
quantum and classical mechanics.

It is important to note that this classical-like behaviour of quantum wave packets
does not depend on a peculiar or precise choice of the quantum state parameters, such as
E,�E, δE,w, x0 or y0. Small changes in these parameters, in most cases, cause small
changes in the corresponding wave packets, which do not alter their similarity to the classical
motion.

Figures 11 and 12 show similar incident beams as in the previous cases but the beams
have been concentrated in the plane at x0 = −250, far before the scatterer. Approaching the
scatterer, the beams have been spread to a width comparable with the interaction range and, as
a result of the scattering, they have been divided into smaller diverging sub-beams. The above
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Figure 12. The same as in figure 10, with a repulsive interaction, except that the initial wave
packet was concentrated in the x0 = −250 plane and arrived at the scatterer as a wide one, thus
exhibiting wave-like or quantum features in scattering.

division of the confined incident beam is the most characteristic feature of wave and quantum
scattering.

The wave packets exhibiting classical properties cannot be confined too much, and have
to remain in moderately confined states. If they were confined in too small a volume, they
would spread out immediately, and in consequence, they would behave in a quantum manner.

A quantitative evaluation of the time evolution of confined nonstationary wave packets has
been attempted in [10]. The accuracy of these estimations was limited and neither the wave
packet spreading in free motion nor any interferences between �I and �S were described.
In consequence, the scattering wavefunctions do not preserve the fixed normalization. These
approximations are dramatically inconsistent in the case of confined wave packets in the
interaction region (the case not considered in [10]) for which, as our discussion shows,
similarities between the classical and quantum dynamics can be expected.

4. Final remarks

The present discussion emphasizes the importance of using the complete wavefunction in the
description of the scattering process. This contrasts with the usual analyses which evaluate the
scattering by taking into account only the scattered part of the wavefunction. In consequence
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of this simplification, the resulting expressions for the differential and total scattering cross
sections take the form of equations (1) and (2).

In fact, such scattering evaluations are common in most scattering theories, not only
quantum, but also including scattering of electromagnetic waves by dielectric objects [2–4]
and by an extended system of free electrons [5]. In these examples, the forward scattering is
dominated by the interference between the scattered and incident radiation, obviously included
in the total wave.

It should be noted, however, that the corrections in scattering caused by using the full
wavefunction which replaces the scattered part of the wavefunction, can be insignificant. This
happens if one is interested in the scattering of wide incident beams by a small scatterer (for
which only a few partial waves are important) and analysing the scattering at sufficiently large
distances from the scatterer. For example, in the limiting case of a point-like scatterer, for
which the scattered wave has cylindrical symmetry, the discrepancies concern only the angular
sector 2πw/r around the forward direction, and at a sufficient distance r the contribution of
this questionable particle flux to the total scattering flux becomes negligible.

When, however, one is interested in the effect of scattering at angles overlaying the
incident beam, then the use of the total wavefunction is required. In fact, Schiff [6] and
Newton [8], when discussing the forward scattering and the optical theorem, recalculated the
particle flux, influenced by scattering, and used the full wavefunction. As can be seen in
figures 7 and 8, the forward fluxes exhibit much stronger modulations than just the magnitudes
of the scattered parts |�S|. These point out the fact that the real modifications of the forward
densities reflect not so much the amplitude of �S , but rather the amplitude of the cross product
Re(�I ∗ �S). It is this last factor which determines a diminution of the incident beam, for
r → ∞ caused by scatterers.

Throughout this paper it has been stressed several times that the individual components,
�I and �S , of the total wavefunction �T are not measurable and, in consequence, not
distinguishable. This statement is only valid for plain and very small detectors. However,
large detectors can be composed of many parts, and can be constructed to exhibit directional
sensitivity features, as is the case with, e.g., optical telescopic apparatuses. Their operation
is not limited to the space outside the incident beam, and they can be immersed inside this
beam. In some sense, they may play the role of collimators, as suggested by Schiff. Such
instruments may be very complicated, but also a second large cylindrical scatterer, placed in
the scattered field, can be of use to resolve both components �I and �S . They can be gathered
into different points, as in [13], and thus independently detected. In fact, the performance of
our eyes, seeing e.g. a blue sky, is connected with their vision directional sensibility.

Though these more advanced detectors can be useful when applied to large angle
scatterings, they cannot resolve the scattering components scattered in the forward direction,
due to their limited resolving power. In particular, if forward flux is blocked by a repulsive
interaction, there will not be any scattered particle flux in the shadow sector, and the second
scatter inserted there cannot provide any detectable signal.

Therefore, admitting that such direction-selective particle detectors do increase the variety
of experiments and measurements, they are not useful in situations involving the moderately
narrow beams for which classical-like behaviour is expected.

Our discussion indicates that classical behaviour of scattering particles can be expected
when their quantum states correspond to small wave packets which remain small and undivided
in passing through the strong interaction scattering region. Thus, the classical limit of a
quantum system does not refer explicitly to the limit h̄ → 0, usually considered as a proper
condition of classical behaviour. Objections to the treatment of this limit as the classical limit
of the corresponding quantum system have been raised by Wichmann [16]. He points out that
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the value of h̄ is associated with a system of units and ought to be fixed. Whether a particular
state behaves classically or quantum mechanically should be determined by its dynamical
features. The present discussion provides a quantitative confirmation of this statement.

Finally, it should be noted that although the present discussion is more specifically centred
on the relation between the quantum and classical mechanics, a similar relationship exists
between geometrical optics and wave optics, preliminarily presented in [17].

Appendix

In this appendix some intermediate steps illustrating the procedure of obtaining solutions
of the Schrödinger equation are presented. Figure 13 shows the radial dependence of the

Figure 13. Radial attractive effective potentials Veff for several values of the partial wave
parameter n.

Figure 14. Internal wavefunctions ψnE for E = 1 and the same Veff as are shown in figure 13.
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(a)

(b)

(c)

Figure 15. Magnitudes of the partial wave amplitudes for the outside atom partial wavefunctions
in the cases of incident (a) plane wave, (b) narrow beam w = 5 shifted to y0 = 20 focused inside
the scatterer (x0 = 0), (c) the above incident beam concentrated in the x0 = −200 plane.

effective potential Veff(n, r) = V (r) + n2

2r2 for several values of n in the case of an attractive
interaction. Figure 14 shows the corresponding non-normalized solutions of the radial parts
of the Schrödinger equation. Note how, for increasing n, these solutions are pushed out of the
interaction region.

Figure 15 shows the magnitudes of the external part of the partial scattered functions for
the incident plane wave (case a) and modified accordingly to the shape of the incident beam.
For the narrow beam inside the interaction region only a limited range of the partial waves
contributes significantly (case b). When the incident beam was concentrated far in front of the
scatterer, while approaching the scatterer it widens and the number of relevant partial waves
increases (case c).
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4464 W Żakowicz

[7] Mott N F and Massey H S 1965 The Theory of Atomic Collisions (Oxford: Clarendon)
[8] Newton R G 1982 Scattering Theory of Waves and Particles 2nd edn (New York: McGraw-Hill)
[9] Mertzbacher E 1998 Quantum Mechanics 3rd edn (New York: Wiley)

[10] Joachain C J 1979 Quantum Collision Theory (Amsterdam: North-Holland)
[11] Amrein W O, Jauch J M and Sinha K B 1977 Scattering Theory in Quantum Mechanics (Reading, MA:

Benjamin)
[12] Pearson D B 1988 Quantum Scattering Theory and Spectral Theory (London: Academic)
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